
The final publication is available at:

http://link.springer.com/chapter/10.1007/978-3-319-04519-1_7

An Efficient and Performance-Aware Big Data Storage

System

Yang Li, Li Guo and Yike Guo

Department of Computing, Imperial College London, UK

{yl4709,liguo,yg}@doc.ic.ac.uk

Abstract. Recent escalations in Internet development and volume of data have

created a growing demand for large-capacity storage solutions. Although Cloud

storage has yielded new ways of storing, accessing and managing data, there is

still a need for an inexpensive, effective and efficient storage solution especially

suited to big data management and analysis. In this paper, we take our previous

work one step further and present an in-depth analysis of the key features of fu-

ture big data storage services for both unstructured and semi-structured data,

and discuss how such services should be constructed and deployed. We also ex-

plain how different technologies can be combined to provide a single, highly

scalable, efficient and performance-aware big data storage system. We espe-

cially focus on the issues of data de-duplication for enterprises and private or-

ganisations. This research is particularly valuable for inexperienced solution

providers like universities and research organisations, and will allow them to

swiftly set up their own big data storage services.

Keywords: Big Data Storage, Cloud Computing, Cloud Storage, Amazon S3,

CACSS

1 Introduction

The truth is that data growth is rapidly outpacing our ability to store, process and

analyse the data we are collecting. Cloud storage relieves end users of the task of

constantly upgrading their storage devices. Cloud storage services offer inexpensive,

secure, fast, reliable and highly scalable data storage solutions over the internet. Many

enterprises and personal users with limited budgets and IT resources are now out-

sourcing storage to cloud storage service providers, in an attempt to leverage the man-

ifold benefits associated with cloud services. Leading cloud storage vendors, such as

Amazon S3 [1] and Google Cloud Storage[2] , provide clients with highly available,

low cost and pay-as-you-go based cloud storage services with no upfront cost. A vari-

ety of companies have outsourced at least a portion of their storage infrastructure to

Amazon AWS, including SmugMug[3], ElephantDrive[4], Jungle Disk[5] and

37signals[3]. Recently, Amazon announced that as of June 2012 it currently holds

more than a trillion objects, and the service has so far been growing exponentially [6].

Even so, many enterprises and scientists are still unable to shift into the cloud envi-

ronment due to privacy, data protection and vendor lock-in issues. An Amazon S3

storage service outage in 2008 left many businesses that rely on the service offline for

several hours and resulted in the permanent loss of customer data, [7, 8], an incident

that led many to question the S3’s “secret” architecture.

Enterprises and scientists use cloud storage services for various purposes, and files

are in different sizes and formats. Some use cloud storage for large video and audio

files, and some use it for storing large quantities of relatively small files; the variety

and range is vast. The different purposes of using cloud storage services give rise to a

significant diversity of patterns of access to stored files. The nature of these stored

files, in terms of features such as size and format, and the way in which these files are

accessed, are the main factors that influence the quality of cloud storage services that

are eventually delivered to the end users. Another challenge to the data storage com-

munity is how to effectively store data without taking the exact same data and storing

it again and again in different locations and storage devices. Data de-duplication and

other methods of reducing storage consumption play a vital role in affordably manag-

ing today’s explosive growth of data. However, no much research has been done on

how to efficiently apply these methods to big data services.

These reasons provide an incentive for organisations to set up or build their own

storage solutions, which are independent of commercially available services and meet

their individual requirements. However, knowledge of how to provide efficient big

data storage service with regards to system architecture, resource management mech-

anisms, data reliability and durability, as well as how to utilise all the resources, re-

duce storage consumption, costs of backup and improve the quality of the services

remains untapped.

Taking one step beyond our previous work [9] to target large-scale data de-

duplication for enterprises and private organisations, we present the new CACSS, an

efficient and performance-aware big data storage system offering not only main-

stream cloud storage features, but global object data de-duplication and data caching

services specifically suited to big data management and analysis. A thorough demon-

stration of CACSS can offer full details on how to construct a proper big data storage

service, including design rationale, system architecture and implementation. This

paper demonstrates how different technologies can be combined in order to provide a

single and highly superior generic solution.

2 Related Work and Problem Analysis

Amazon Simple Storage Service (Amazon S3) is an online storage service that aims

to provide reliable and excellent performance at a low cost. However, neither its ar-

chitecture nor its implementation has yet been made public. As such, it is not availa-

ble for extension in order to develop the capability of creating private clouds of any

size. Amazon S3 is the leading de facto standard of bucket-object oriented storage

services. Successive cloud storage vendors, such as Rackspace [11] and Google Cloud

Storage [2] all adopt s3’s style of bucket-object oriented interface. This style hides all

the complexities of using distributed file systems, and it has proven to be a success

[12]. It simply allows users to use the storage service from a higher level: an object

contains file content and file metadata, and it is associated with a client assigned key;

a bucket, a basic container for holding objects, plus a key to uniquely identify an ob-

ject.

The cloud provides a new way of storing and analysing Big Data because it is both

elastic and cost-efficient. Additional computational resources can be allocated on the

fly to handle increased demand and organizations only pay for the resource that they

need. However, companies that work with big data have been unable to realize the

full potential of the cloud due to the Internet connections used to move big data in, out

and across cloud infrastructures are not quite as elastic. In addition, the high

read/write bandwidths that are demanded by I/O intensive operations, which occur in

many different Big Data scenarios, cannot be satisfied by current internet connections

[13, 14].

Besides Amazon S3, there have been quite a few efforts in cloud storage services,

including the following.

The Openstack [15] project has an object storage component called Swift, which is

an open source storage system for redundant and scalable object storage. However, it

does not support object versioning at present. The metadata of each file is stored in

the file’s extended attributes in the underlying file system. This could potentially cre-

ate performance issues with a large number of metadata accesses.

Walrus [16] is a storage service included with Eucalyptus that is interface-

compatible with Amazon S3. The open source version of Walrus does not support

data replication services. It also does not fully address how file metadata is managed

and stored.

 pWalrus [17] is a storage service layer that integrates parallel file systems into

cloud storage and enables data to be accessed through an S3 interface. pWalrus stores

most object metadata information as the file’s attributes. Access control lists, object

content hashes (MD5) and other object metadata are kept in .walrus files. If a huge

number of objects are stored under the same bucket, pWalrus may be inefficient in

searching files based on certain metadata criteria; this factor can cause bottlenecks in

metadata access.

 Cumulus [18] is an open source cloud storage system that implements the S3 inter-

face. It adapts existing storage implementations to provide efficient data access inter-

faces that are compatible with S3. However, details of metadata organisation and

versioning support are not fully addressed.

 Hadoop Distributed File System (HDFS) [19] is a distributed, reliable, scalable

and open source file system, written in Java. HDFS achieves reliability by replicating

data blocks and distributing them across multiple machines.

HBase [20] is an open source, non-relational, versioned, column-oriented distribut-

ed database that runs on top of HDFS. It is designed to provide fast real time

read/write data access. Some research has already been done to evaluate the perfor-

mance of HBase [21] [22].

For the past four decades, disk-based storage system performance has not im-

proved as quickly as its capacity. As a result, many large-scale web applications are

keeping a lot of their data in RAMs, and the role of RAM in storage systems has

steadily increased over recent years. For example, as of 2008 Facebook used over 28

http://www.attunity.com/blog-by-tag/108?__hstc=82965065.b0e1d2daec3d7e895d7c27638857536e.1361361147737.1361361147737.1361361147737.1&__hssc=82965065.1.1361361147738

terabytes of memory[23], and major Web search engines such as Google and Yahoo

keep their search indexes entirely in memory[24]. Google’s Bigtable storage system

[25] allows entire column families to be loaded into memory where they can be read

without disk accesses. RAMCloud[26] is a DRAM-based storage system that provides

inexpensive durability and availability by recovering quickly after crashes.

Data de-duplication is a data compression technique for eliminating duplicate cop-

ies of redundant data. The de-duplication technology has been widely applied in disk-

based secondary storage systems to improve cost-effectiveness via space efficiency. It

is most effective in storage systems where many duplicates of very similar or identical

data are stored. Many studies on block-level and file-level data de-duplication have

been carried out. One of the challenges facing large-scale de-duplication enabled

storage systems is duplicate-lookup created bottlenecks due to metadata and actual

file data which is stored separately and the large size of the data index, which limits

the de-duplication throughput and performance[27-33].

CACSS is currently deployed on top of the IC-Cloud[34] infrastructure and is be-

ing used by over 200 internal students, especially those enrolled in the “Distributed

Systems and Cloud Computing” course. Several assignments, individual and group

projects rely heavily on the CACSS API to manage their data. Some other external

collaborators are also using CACSS as their data backup space. By monitoring the

data access patterns and analysing the actual data stored in our system, we discovered

two important characteristics that might help improve our system’s efficiency and

performance. We discovered that while some files were used intensively over a very

short period, much other data were hardly accessed. We also found over 20% dupli-

cated objects with the same checksums stored in our system. This issue of redundancy

is common and exists in many enterprises: a survey by AFCOM found that over 63%

of IT managers surveyed have seen a significant increase in their storage costs. One of

the main reasons for that dramatic increase is file sharing across different endpoint

devices and collaboration tools creating large amounts of data duplication.

These discoveries have motivated us to determine how we can improve perfor-

mance and make CACSS more efficient. Increasing the efficiency and effectiveness

of storage environments helps organizations improve their competitiveness by remov-

ing constraints on data growth, improving their service levels, and maintaining better

leverage over the increasing quantity and variety of data. While much research has

been done on data de-duplication and data caching in traditional file storage systems,

there is still a lack of research and evaluation for the big data environment in which

security, performance and reliability are becoming more crucial. Therefore we decid-

ed to add in-line file-level de-duplication and object caching features to our cloud

storage system and evaluate them from the real environment.

3 System Design

The architecture of CACSS is shown in Fig. 1. From a conceptive level, it consists of

the following components:

─ Access interface: provides a unique entry point to the whole storage system

─ Metadata management service: manages the object metadata and permission con-

trols.

─ Metadata storage space: stores all of the object metadata and other related data.

─ Object operation management service: handles a wide range of object operation

requests.

─ De-duplication controller: manages global inline data de-duplication.

─ Object caching controller: provides data caching as a service.

─ Object data storage space, global object storage space and object caching space,:

store all of the object content data in different circumstances.

Fig. 1. CACSS Architecture

3.1 Access Interface

CACSS offers a web-based interface for managing storage space and searching for

objects. The current implementation supports Amazon’s S3 REST API, the prevailing

standard commercial storage cloud interface.

3.2 Identity and Access Management service

IAM is a separated service that provides authorization and access control of various

resources. It offers sub user, group management and precise permission control of

which operations a user can perform and under what conditions such operations can

be carried out.

3.3 Metadata Management

To achieve high performance in metadata access and operation, CACSS’s object

metadata and content are completely separated. Each object’s metadata—including its

system metadata such as size, last date modified and object format, together with user

defined metadata—are all stored as a collection of blocks addressed by an index in

CACSS’s Metadata Storage Space (MSS). MSS keeps all of the collections’ data

sorted lexicographically by index. Each block is akin to a matrix which has exactly

two columns and unlimited rows. The values of the elements in the first and second

columns are block quantifiers and block targets, respectively. All of the block quanti-

fiers have unique values in each block:
 []

 E.g. an index of W maps to a collection:

([

] [

] [

])

3.4 Metadata Management Service

MMS manages the way in which an object’s metadata is stored. In such a system a

client will consult the CACSS MMS, which is responsible for maintaining the storage

system namespace, and they will then receive the information specifying the location

of the file contents. This allows multiple versions of an object to exist.

MMS handles requests as follows. First, it checks if a request contains an access

key and a signed secret key. CACSS consults AIM and MSS to verify whether the

user has the permission to perform the operation. If they do have permission, the re-

quest is authorized to continue. If they don’t, error information is returned. If a re-

quest does not contain an access key or a signed secret key, MMS is looked up to

verify if the request to the bucket or object is set as publicly available to everyone. If

it is set as public, then the request continues to the next step. All the requests are

logged, both successful and failed. The logging data can be used by both the service

provider and storage users for billing, analysis and diagnostic purposes.

Differing from traditional storage systems that limit the file metadata which can be

stored and accessed, MMS makes metadata more adaptive and comprehensive. Addi-

tional data regarding file and user-defined metadata can be added to the metadata

storage, and these data can be accessed and adopted on demand by users or computa-

tional works at any time. Searching via metadata is another key feature of CACSS.

Buckets. To reduce interoperability issues, CACSS adopts the de facto industry

standard of buckets as basic containers for holding objects.

Unlike some traditional file systems, in which a limited number of objects can be

stored in a directory, a CACSS bucket has no limit. CACSS has a global

namespace—bucket names are unique and each individual bucket’s name is used as

the index in the MSS. We use various block quantifiers and block targets to store a

variety of information, such as properties of a bucket or an object, permissions and

access lists for a particular user, and other user defined metadata.

For example, for a bucket named “bucket1”, an index “bucket1” should exist,

which maps to a collection of data such as:

(

[

]

[]

[])

Objects. The index of each object is comprised of a string, which has the format of

the bucket name together with the assigned object key. As a result of this nomencla-

ture, objects of the same bucket are naturally very close together in MSS; this im-

proves the performance of concurrent metadata access to objects in the same bucket.

For example, for an object with the user-assigned key “object/key.pdf” in bucket

“bucket1”, an index of “bucket1- object/key.pdf” should exist, which maps to the

following collection of data:

(

[

]

[]

[

]
)

Object Versioning. When versioning setting is enabled for a bucket, each object key

is mapped to a core object record. Each core object record holds a list of version IDs

that map to individual versions of that object.

For example, for an object with a predefined key “object/paper.pdf” in bucket

“versionbucket”, an index of should exist,

which maps to the collection data:

(

[

]

[

 ()

 ()
]
)

Similarly, the object’s version record with row key “versionbucket-

object/paper.pdf-uuid1” maps to the collection data:

(
[

]

[]

)

3.5 Object Data Management

CACCS stores all the unstructured data, such as file content, in the Object Data Stor-

age Space (ODSS). ODSS is intentionally designed to provide an adaptive storage

infrastructure that can store unlimited amounts of data and that does not depend on

underlying storage devices or file systems. Storage service vendors are able to com-

pose one or multiple types of storage devices or systems together to create their own

featured cloud storage system based on their expertise and requirements in terms of

level of availability, performance, complexity, durability and reliability. Such imple-

mentation could be as simple as NFS [35], or as sophisticated as HDFS [19], PVFS

[36] and Lustre [37].

CACSS’s File Operation Management Service (FOMS) implements all ODSS’s

underlying file systems’ API, so that it can handle a wide range of file operation re-

quests to the ODSS. FOMS works like an adapter that handles the architectural differ-

ences between various storage devices and file systems. It works closely with MMS

to maintain the whole namespace of CACSS.

File Level Data De-duplication.

To enable data storage efficiency, CACSS has introduced a De-duplication Controller

(DDC) and a Global Object Storage Space (GOSS) into the design. Currently, the

DDC is only implemented to use a global file-level de-duplication method, which

manages how and where duplicated objects should be stored in the GOSS. If a bucket

is configured to enable data de-duplication, all the objects in this bucket will be stored

in the GOSS. It is extremely unlikely to have a collision between two files with dif-

ferent content but the same SHA-256 checksum [38]. Therefore, CACSS uses SHA-

256 hash function to calculate the checksum of each incoming storing object, and if

the checksum does not exist in the MSS, a new de-duplication object metadata record

with $ddes and the hash value as the key will be inserted. The physical file content

will be saved into the GOSS as a new file. If the checksum already exists in the MSS,

the record will be updated to attach this object’s bucket name, object key and the user

id (Fig. 2).

(

[

]

)

Fig. 2. Bucket-Object to Global Object Storage Space mapping

Object Data Caching Facility.

The ODCF contains the Object Caching Controller (OCC) and Object Caching Space

(OCS). With CACSS’s OCDF, it is possible to cache certain frequently-accessed

objects into the OCS. Such space provides multi-level cache capability, accelerating

data access. It can be implemented by a mix of RAM, SSD and other high speed

storage devices. The OCC keeps records of all object data accesses, and manages a

global object access ranking table. Depending on the total spaces available on the

OCS, the OCC intelligently decides which top accessed object data should be cached

and where it should be cached. For example, the most accessed object data will be

copied into RAM, while medium accessed object data or frequently accessed large

files that cannot fit in to the RAM will reside in the SSD. When an object access re-

quest is received, the OCC first checks to determine if the latest object data are locat-

ed in the OCS; if not, data will be returned from the ODSS or the GOSS. We have

also enabled the “Caching on Demand” service feature, which allows users to specify

exactly which object data should be cached.

4 Implementation

After considerable research and experimentation, we chose HBase as the foundational

MSS storage for all object metadata. HBase is highly scalable and delivers fast ran-

dom data retrieval. Its column-orientation design confers exceptional flexibility in the

storing of data.

We chose Hadoop DFS (HDFS) as the foundational storage technology for storing

object data in the ODSS. Hadoop also supports MapReduce framework [39] that can

be used for executing computation tasks within the storage infrastructure. Although

there is a single point of failure at the NameNode in HDFS’s original design, many

research studies have been carried out in order to build a highly available version of

HDFS NameNode, such as AvatarNode [40]. Every file and block in HDFS is repre-

sented as an object in the NameNode’s memory, each of which occupies about 150

bytes. Therefore the total memory available on NameNode dictates the limitation of

the number of files that can be stored in the HDFS cluster. By separating object

metadata and object data, CACSS is able to construct an adaptive storage infrastruc-

ture that can store unlimited amounts of data using multiple HDFS clusters, whilst

still exposing a single logical data store to the users (Fig. 4). Using Linux Ram Disk

technique, we employ server RAMs in Tomcat Clusters to serve as the Object Cach-

ing Space.

4.1 Multi-region support

The design and architecture of CACSS are based on the principles of scalability, per-

formance, data durability and reliability. Scalability is considered in various aspects

including the overall capacity of multi-region file metadata and file storage, as well as

throughput of the system. Taking another perspective, the implementation of CACSS

consists of a region controller and multiple regions (Fig. 3).

Fig. 3. Implementation of CACSS

A Tomcat cluster is used as the application server layer in each region. It is easy to

achieve high scalability, load balancing and high availability by using a Tomcat clus-

ter and configuring with other technologies such as HAProxy and Nginx [41, 42]. The

region controller has a MySQL cluster for storing various data such as user account

information and billing and invoice details.A bucket can be created in one of the re-

gions, and at the same time, a DNS A record is inserted into the DNS server. This

mapping ensures that clients will send a hosted-style access request of the bucket and

the object to the correct region. Each region is consistent with a Tomcat cluster, an

HBase cluster and a set of HDFS clusters. The object data is stored in one of the

HDFS clusters in the region. The object key and metadata are stored in the region’s

HBase cluster. It is always important to consider that any access to a bucket or object

requires access rights to be checked. In CACSS, each request goes through its region

first; if the requested bucket or object is set to be public, there is no need to communi-

cate with the region controller. If it is not set as public, it consults the region control-

ler to perform the permission check before making a response. The region controller,

which includes a MySQL cluster, keeps records of all the requests and maintains user

accounts and billing information. A DNS system (such as Amazon Route 53 [43])

serves to map the bucket name to its corresponding region’s Tomcat cluster IP. The

region controller can also connect to the existing IAM service to provide more sophis-

ticated user and group management.

Fig. 4. Implementation multi-region HDFS clusters for storing buckets and contents of objects

CACSS also adopts other useful features of HDFS such as no explicit limitation on

a single file size and no limitation on the number of files in a directory. In CACSS,

most of the objects are stored in a flat structure in HDFS. Each object’s file name

under HDFS is a generated UUID to ensure uniqueness.

The implementation of CACSS does not need to rely solely on HDFS. The com-

plete separation of file metadata from file content enables CACSS to adapt to one or

even multiple file systems, such as GPFS or Lustre. It is now deployed as a service

under the IC-Cloud platform, and is expected to work with a variety of distributed file

systems through POSIX or their APIs without much effort.

5 Experiments

We have done two sets of experiments so far. The first set was performed on top of

Amazon EC2 instances, to enable the comparison of CACSS and Amazon S3 under

similar hardware and network environments. We used JetS3t [44], an open source

Java S3 library, configuring it with our experiment code to evaluate the performance

of CACSS.

We used one m2.xlarge instance, with 17.1GB of memory and 6.5 EC2 Compute

Units, to run MySQL, HDFS NameNode, HBase Hmaster and Tomcat with the

CACSS application. Three m1.large instances, each with 7.5GB memory and 4 EC2

Compute units ran HDFS DataNodes and HBase Regionservers. Each of these in-

stances was attached with 100GB volumes of storage space. Another two m1.large

instances were configured with the same experiment code but different S3 end points.

We refer to these two instances as “S3 test node” and “CACSS test node.”

To evaluate the performance of CACSS, we ran a series of experiments on both

Amazon S3 and CACSS. The evaluation of the performance of Amazon EC2 and S3

has been carried out previously by [10]. A similar method was adopted here to evalu-

ate the overall throughput of CACSS.

Fig. 5 and Fig. 6 illustrate respectively the write and read throughputs of Amazon

EC2 to Amazon S3, and of EC2 to CACSS, based on our experiments. Each graph

contains traces of observed bandwidths for transactions of 1KB, 1MB, 100MB and

1GB. Both Amazon S3 and CACSS perform better with larger transaction sizes, be-

cause smaller size files would require more transaction overhead. For files larger than

1MB, the average speed of transaction of CACSS is higher than Amazon S3; this is

probably due to underlying hardware differences between Amazon EC2 and Amazon

S3, such as hard drive RPM and RAID levels.

 Amazon S3’s List Objects operation only supports a maximum of 1000 objects to

be returned at a time, so we could not properly evaluate its object metadata service

performance. However, we were able to run some tests to evaluate CACSS’s metada-

ta management. We ran a List All Objects operation after every 1000 Put Object op-

erations. All of the operations were targeted to the same bucket. Each Put Object uti-

lised using an empty file, because for this experiment we were only interested in the

performance of the metadata access. Fig. 8 shows a scatter graph of the response time

of each Put Object, with respect to the total number of objects in the bucket. The re-

sult shows an average response time of 0.007875s and a variance of 0.000157s for

each Put Object operation. This indicates that the response time is pretty much con-

stant no matter how many objects are stored in the bucket. Fig. 7 illustrates the re-

sponse time of each List All Objects operation with respect to the total number of

objects contained in the bucket. There are several peaks in the graph marked with a

red circle. These peaks are caused by sudden network latency between Amazon EC2

instances during that time. Otherwise, the overall result shows a linear relation be-

tween the response time and the total number of objects.

The second set of experiments was performed on top of the IC-Cloud in order to

compare the effectiveness of the object caching mechanisms we implemented. We

used four virtual machines (VMs) to create a CACSS cluster. One VM with 8GB of

memory and 4 CPU cores was used to run MySQL, HDFS NameNode, HBase Hmas-

ter and Tomcat with the CACSS application and allocated RAM disk space. The other

three were each configured with 4GB memory and 2 CPU cores to run HDFS

DataNodes and HBase Regionservers. The two graphs in Fig. 9 illustrate respectively

the total object downloading time with and without object caching enabled from

CACSS of various sizes. When object caching was enabled, we saw an improvement

in average download speed for all object sizes, especially for objects with sizes of

1MB and 50MB.

Fig. 5. Cumulative Distribution Function (CDF) plots for writing transactions from EC2 to

Amazon S3 and CACSS of various sizes.

Fig. 6. CDF plots for reading transactions from EC2 to Amazon S3 and CACSS of

various sizes.

Fig. 9. CDF plots for object downloading with and without Object Caching enabled from

CACSS of various sizes.

6 Conclusions

In this paper, we described the design and implementation of CACSS, a big data stor-

age system, taking into account the generic principles of data storage efficiency and

durability, scalability, performance and reliability. CACSS has been deployed on top

of IC-Cloud infrastructure since 2012 and has served as the main storage space for

several internal and external collaborative projects. CACSS delivers comprehensive

features such as data access through the S3 interface (the de facto industry standard),

native and user defined object metadata searching, global data de-duplication and

object data caching services. The storage model we propose offers service providers a

considerable advantage by combining existing technologies into a single customized

big data storage system. Furthermore, CACSS performance was found to be compa-

rable to Amazon S3 in formal tests, with similar read/write capabilities. We have seen

improvement in performance with object caching enabled through preliminary exper-

iments. However, there is still much improvement and evaluation work to be done on

the newly added features such as object data de-duplication and object data caching

services. These features will be addressed and their effectiveness validated in our

future work.

Fig. 8. Put Object requests Fig. 7. List all objects requests

References

1. Amazon. Amazon Simple Storage Service (S3). Available from:

http://aws.amazon.com/s3/.

2. Google. Google Cloud Storage Service. Available from:

http://code.google.com/apis/storage/.

3. AWS Case Study: SmugMug. 2013.

4. http://aws.amazon.com/solutions/case-studies/elephantdrive/.

5. AWS Case Study: Jungle Disk.

6. Amazon, Amazon S3 - The First Trillion Objects. 2012.

7. Gohring, N., Amazon's S3 Down for Several Hours.

8. Brodkin, J., Outage hits Amazon S3 storage service. 2008.

9. Li, Y., L. Guo, and Y. Guo, CACSS: Towards a Generic Cloud Storage Service, in

CLOSER. 2012, SciTePress. p. 27-36.

10. Garfinkel, S.L. z ’ g g C , S3,

SQS. 2007. Citeseer.

11. Rackspace. Cloud Files. Available from: http://www.rackspace.co.uk.

12. Barr, J. 2011.

13. Wang, G. and T.E. Ng. The impact of virtualization on network performance of

amazon ec2 data center. in INFOCOM, 2010 Proceedings IEEE. 2010. IEEE.

14. Garfinkel, S.L. z ’ g computing services: EC2, S3, and

SQS. in Center for. 2007. Citeseer.

15. Openstack. Available from: http://openstack.org.

16. Nurmi, D., et al. The eucalyptus open-source cloud-computing system. 2009. IEEE.

17. Abe, Y. and G. Gibson. pWalrus: Towards better integration of parallel file systems

into cloud storage. 2010. IEEE.

18. Bresnahan, J., et al., Cumulus: an open source storage cloud for science. SC10

Poster, 2010.

19. Borthakur, D., The hadoop distributed file system: Architecture and design. Hadoop

Project Website, 2007.

20. HBase, A.; Available from: http://hbase.apache.org/.

21. Carstoiu, D., A. Cernian, and A. Olteanu. Hadoop Hbase-0.20.2 performance

evaluation. in New Trends in Information Science and Service Science (NISS), 2010

4th International Conference on. 2010.

22. Khetrapal, A. and V. Ganesh, HBase and Hypertable for large scale distributed

storage systems. Dept. of Computer Science, Purdue University, 2006.

23. Saab, P., Scaling memcached at Facebook. Facebook Engineering Note, 2008.

24. Barroso, L.A., J. Dean, and U. Holzle, Web search for a planet: The Google cluster

architecture. Micro, IEEE, 2003. 23(2): p. 22-28.

25. Chang, F., et al., Bigtable: A distributed storage system for structured data. ACM

Transactions on Computer Systems (TOCS), 2008. 26(2): p. 4.

26. Ongaro, D., et al. Fast crash recovery in RAMCloud. in Proceedings of the Twenty-

Third ACM Symposium on Operating Systems Principles. 2011. ACM.

27. Tianming, Y., et al. DEBAR: A scalable high-performance de-duplication storage

system for backup and archiving. in Parallel & Distributed Processing (IPDPS),

2010 IEEE International Symposium on. 2010.

http://aws.amazon.com/s3/
http://code.google.com/apis/storage/
http://aws.amazon.com/solutions/case-studies/elephantdrive/
http://www.rackspace.co.uk/
http://openstack.org/
http://hbase.apache.org/

28. Yujuan, T., et al. SAM: A Semantic-Aware Multi-tiered Source De-duplication

Framework for Cloud Backup. in Parallel Processing (ICPP), 2010 39th

International Conference on. 2010.

29. Chuanyi, L., et al. ADMAD: Application-Driven Metadata Aware De-duplication

Archival Storage System. in Storage Network Architecture and Parallel I/Os, 2008.

SNAPI '08. Fifth IEEE International Workshop on. 2008.

30. Quinlan, S. and S. Dorward. Venti: a new approach to archival storage. in

Proceedings of the FAST 2002 Conference on File and Storage Technologies. 2002.

31. You, L.L., K.T. Pollack, and D.D. Long. Deep Store: An archival storage system

architecture. in Data Engineering, 2005. ICDE 2005. Proceedings. 21st International

Conference on. 2005. IEEE.

32. Dubnicki, C., et al. Hydrastor: A scalable secondary storage. in Proccedings of the

7th conference on File and storage technologies. 2009. USENIX Association.

33. Jiansheng, W., et al. MAD2: A scalable high-throughput exact deduplication

approach for network backup services. in Mass Storage Systems and Technologies

(MSST), 2010 IEEE 26th Symposium on. 2010.

34. Guo, Y.-K. and L. Guo, IC cloud: Enabling compositional cloud. International

Journal of Automation and Computing, 2011. 8(3): p. 269-279.

35. Sandberg, R., et al. Design and implementation of the Sun network filesystem. 1985.

36. Carns, P.H., et al. PVFS: A parallel file system for Linux clusters. 2000. USENIX

Association.

37. Schwan, P. Lustre: Building a file system for 1000-node clusters. 2003.

38. Gilbert, H. and H. Handschuh. Security analysis of SHA-256 and sisters. in Selected

Areas in Cryptography. 2004. Springer.

39. Apache. Hadoop MapReduce. Available from: http://hadoop.apache.org/mapreduce/.

40. Borthakur, D., Hadoop avatarnode high availability. 2010.

41. Doclo, L., Clustering Tomcat Servers with High Availability and Disaster Fallback.

2011.

42. Mulesoft, Tomcat Clustering - A Step By Step Guide.

43. Amazon. Route 53. Available from: http://aws.amazon.com/route53/.

44. JetS3t. JetS3t. Available from: http://jets3t.s3.amazonaws.com.

http://hadoop.apache.org/mapreduce/
http://aws.amazon.com/route53/
http://jets3t.s3.amazonaws.com/

